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Subcritical and Supercritical Water Radial
Distribution Function
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A theoretical and analytic expression for the first shell, and an analytic empirical
expression for the whole radial distribution function (RDF) of water are
introduced. All the asymptotic limits and functionalities of the RDF with tem-
perature and density are incorporated in these expressions. An effective Kihara
pair potential function is presented for water intermolecular interactions which
incorporates the hydrogen bonding by using the chain association theory. The
intermolecular pair potential parameters are adjusted to the experimental x-ray
diffraction data of water RDF at various temperatures. The predicted first-shell
results for water near critical and in supercritical conditions compare satisfac-
torily with the available neutron diffraction RDF data, with the simulation
RDF results, and with the empirical RDF curves. The empirical expression
initially proposed for the RDF of the Lennard-Jones fluid is extended to predict
the RDF and the isothermal compressibility of water to conditions where
experimental or simulated data are not available. Comparison with the
Lennard-Jones fluid shows that the height of the first peak of water RDF
changes much less at subcritical and supercritical conditions compared to that
of the Lennard-Jones fluid which decreases appreciably going from subcritical
to supercritical conditions.

1 Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton,
Chicago, Illinois 60607-7000, U.S.A.

2 To whom correspondence should be addressed.
3 Istituto di Chimica Quantistica ed Energetica Molecolare, 56100 Pisa, Via Risorgimento 35,

Italy.

1. INTRODUCTION

Over the last two decades, there have been extensive studies to explore the
detailed structural behavior of water. The molecular structure and macro-
scopic properties of water in various phases have been studied and
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measured carefully, and the related data are compiled since the nineteenth
century. However, our understanding of the statistical-mechanical relations
between microscopic and macroscopic behaviors of water is still limited
and inaccurate.

The radial distribution function (RDF) of water is the most infor-
mative feature of its molecular structure, and its knowledge over wide
ranges of pressure and temperature joined with an appropriate potential
function would allow a detailed understanding of the structure and predic-
tion of properties (such as solubility and phase equilibria) not only for the
pure substance but also for mixtures. Particularly important would be this
knowledge near the critical conditions, because of the wide industrial
application of water as an extracting solvent.

Recently Touba and Mansoori [ 1 ] proposed a functional form for the
first shell of the RDF which was applied to the Lennard-Jones and Kihara
potential energy functions. This model has produced results in good agree-
ment with the available computer simulation data of RDF for these model
fluids and the experimental data for argon. As a continuation of the above
study on the RDF of fluids, it is deemed interesting to extend this model
to water from normal to supercritical conditions. To achieve this purpose,
an effective Kihara pair potential is derived for water molecules which
incorporates the hydrogen bonding according to the analytic chain associa-
tion theory and the conformal solution theory.

In order to check the reliability of this model in various conditions, we
have also extended the application of another expression for the total RDF
curve to extrapolate the features of the experimental RDF of water. This
model which was proposed initially for the prediction of Lennard-Jones
fluid RDF by Matteoli and Mansoori [2] produces accurate values for the
isothermal compressibility of water.

2. THE FIRST-SHELL RADIAL DISTRIBUTION FUNCTION
MODEL FOR WATER

Two limiting conditions that the RDF has to satisfy are the case of
dilute gases in which the density approaches zero and the case of hard
spheres, where the temperature approaches infinity. The RDF of dilute
gases can be derived from statistical thermodynamics as:

where gdg(y) is the dilute gas RDF, y = r/a, r is the intermolecular distance,
a is the length parameter in the potential energy function, (/> is the inter-



Rm is the location of the dilute gas RDF peak which can be calculated by
solving the following equation:
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molecular potential energy function, B = 1 / ( k T ) , T is the absolute tem-
perature, and k is Boltzmann's constant.

Touba and Mansoori [ 1 ] proposed the following functional form for
the first shell of the RDF which satisfies these two limiting cases.

where x = r/d, d* = d/a, d is the location of maximum of RDF which in the
case of hard sphere RDF corresponds to the hard-core diameter, ym is the
minimum of the RDF after the first peak, and ghs(x) is the hard sphere
RDF for which Wertheim's analytical solution [3] of the Percus-Yevick
equation for the first shell of hard sphere RDF has been utilized. Both
Eqs. (2) and (3) converge to the following simple equation at the maximum
of the first peak of the RDF (at y = d*}.

The parameters cl and c2 appearing in Eqs. (2) and (3) must be deter-
mined from the fact that the g(y) has to be maximum at distance d*, i.e.,
[ d g ( y ) / d y ] y = d * = 0.

The parameters ml,m2, and d* in the RDF equation are expressed as
functions of the dimensionless temperature T = kT/e, e being the energy
parameter of the potential energy function, and dimensionless density
p* =pa3 in such a way that they satisfy the limiting conditions of RDF:



According to Eq. (7), as the temperature approaches infinity, m1 will
approach unity. Therefore, we conclude that Eq. (3) approaches the limit-
ing case of the hard sphere RDF, ghs, for y^-d* (or x^ 1). For the case
where the density is very low, according to Eqs. (5)-(10), ml = cl = c2 = 0
and m2= 1. Therefore, Eqs. (2) and (3) reduce to Eq. (1), the dilute gas
RDF.

The above expressions have initially been applied to simple potential
energy functions, such as the Lennard-Jones and Kihara [ 1 ]. By using the
analytic chain association theory and the conformal solution theory, it is
possible to derive an effective Kihara pair potential function for water
which incorporates the hydrogen bonding. This effective potential function
can then be introduced into the above expressions in order to predict the
first shell RDF of water.

3. AN EFFECTIVE KIHARA PAIR POTENTIAL FUNCTION
FOR WATER

The Kihara pair potential energy function assumes that each molecule
has an impenetrable hard core of diameter 8 and accounts for the inter-
molecular forces.
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where 8* =6/a. In order to use the Kihara potential function in the first-
shell RDF model previously presented, we need to derive the expressions
for $(x), <f>(d*), < f > ' ( d * ) , < f > ' ( 1 ) , and Rm, as determined below:

The key feature of water intermolecular energy is the hydrogen bond-
ing which brings about formation of chemical aggregates or polymers.
In order to reproduce the intermolecular characteristics of water, the
hydrogen bonding has to be assimilated into the Kihara potential function



where xi is the mole fraction of (H2O) i. For simplicity we assume that all
Ki's are the same, (i.e., K = Kl=K2= ••• = Ki = •••).

We may extend Eq. (18) to different associating species as follows:

Considering Kxl < 1, we may show that the series on the left side of
Eq. (20) converges to

By using the above system of equations, x i's may be calculated provided
that xl and K are known. Since summation of all mole fractions is unity,
then

parameters. Several investigators have suggested that some form of
hydrogen bonding is present even at supercritical conditions [4-6].
Nemethy and Scherga [7] indicated through their studies on water struc-
ture that hydrogen bonding plays an important role in forming aggregates
that can reach sizes of up to one hundred H2O molecules at room tem-
perature. We represent the association of water molecules due to hydrogen
bonding with the following chain reaction [8].

Assuming that the associating species form an ideal solution, we can
express the equilibrium constant of the above reaction as:
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where the subscript (00) denotes the reference fluid and the parameters aij

and eij represent the molecular conformal diameter and energy parameters,
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Then, the following relation will result from Eq. (21).

The association constant, K, appearing in this equation is generally
expressed as:

By joining Eqs. (22), (24), and (25) we get the following result:

X0 is the normalizing factor and can be calculated by using Eq. (23).

where X(I) is defined as follows:

Having a large number of associated species, compositions may be
replaced with a composition distribution function X(I) where / is the number
of associated monomers. In this case, the summation in Eq. (20) can be
replaced with an integral.

Applying the conformal solution theory, which assumes that there
exists a pure hypothetical fluid with the same properties as those of the
mixture at the same density and temperature, the pair potential <J>ij can be
represented as follows [10]:

where the reference changes of enthalpy and entropy of association, AH°
and DS°, are independent of temperature. The most reliable values for
AH° and AS° are those obtained by using spectroscopic methods, such as
Raman spectroscopy as reported in Ref. 9:



respectively. The conformal solution theory is considered quite effective in
extending the applicability from pure fluids to fluid mixtures. Among the
statistical mechanical conformal solution theories of mixtures, the one-fluid
van der Waals theory is simple to use and accurate enough [11] with the
following form for the parameters of the Kihara potential.

Considering the number of associating species to be very large, we can
replace the above summations with integrals and the compositions with the
composition distribution function which was already derived.

Applying the combining rules CT3
ij. = (CT3

I + (7j
3)/2, 63

ij = (<53
i + <53

j)/2, and
sij = ( e i e j )

l / 2 for the unlike-interaction potential parameters, we get the
following expressions:
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Equations (41) to (43) when joined with the Kihara potential energy func-
tion, Eq. (11), represent the effective intermolecular potential energy func-
tion for an associating fluid, such as water. The Kihara parameters for
water have been calculated by using the proposed expressions for the first
shell of the RDF and the experimental data reported by Narten and Levy
[12]. Figures 1-3 show the variations of calculated values of a, S, and e for
the Kihara potential function with temperature.

According to Fig. 1, it can be seen that a does not practically change
with temperature which implies that in Eq. (41), we can assume £i = 0
which results in:
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We relate parameters |>(I)]3, [<5(I)]3 , and [e(I)]1/2 to the following
functions of the distribution index "I".

where al, S1, and £1 are the potential energy function parameters for the
monomer and <Jl £2, £3, and £4 are constants.

Substituting Eqs. (26) and (38) to (40) into Eqs. (35) to (37), respec-
tively, and integrating, we will have:

where F is the gamma function and 0 is defined as:

According to Fig. 2, the d parameter of the Kihara potential for water
is a decreasing function of temperature. The values of £2 and dl appearing
in Eq. (42) are found to be £2= 1.0 and S1 =0.35 A by fitting the data of
this figure to Eq. (42). Hence Eq. (42) becomes
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Fig. 1. Variations of a with temperature using the
proposed equation for the first shell of RDF.

Fig. 2. Variations of S with temperature using the
proposed equation for the first shell of RDF.

Fig. 3. Variations of £ with temperature using the proposed
equation for the first shell of RDF.
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According to Fig. 3, the variation of s/k with temperature is not
monotonic. Since £ i = 0 then Eq. (43) can be simplified to the following
form:

By fitting this equation to the data of s/k versus temperature in Fig. 3, it
is shown that these data can be best represented by Eq. (46) when e1/k =
130K, £3 = 0.4, and £4 = 0.0036.

In Figs. 1-3, the circles represent the experimental data and the solid
lines represent the calculations by Eqs. (44)-(46). According to these
figures, these correlations are in very good agreement with the experimental
data.

4. CALCULATIONS AND COMPARISONS

The molecular structure of water has conventionally been charac-
terized with the RDF data which are available either from x-ray diffraction
and neutron scattering experiments or from computer simulations. The
proposed RDF expressions along with the corresponding water potential
energy function have been tested versus the experimental and simulation
data.

Figures 4-11 represent the calculated first shell of the RDF of water
at temperatures 4, 20, 25, 50, 75, 100, 150, and 200°C, respectively. The

Fig. 4. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [12]) at
T=4°C.
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Fig. 5. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [ 12]) at
T=20°C.

effective Kihara potential function has been used for associating fluids as
derived and reported in the previous section. Also reported in these figures
are the experimental data of the water RDF by Narten and Levy [12].
According to these figures, predictions of the first shell by the proposed
model are in excellent agreement with the experimental data.

Fig. 6. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [ 12]) at
T=25°C.

Radial Distribution Function of Water
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Fig. 7. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [12]) at
T=50°C.

Experimental data of water RDF at near-critical conditions are not
numerous. However, it would be interesting to examine if the present
model is able to predict reliable RDF values at these conditions. To do
that, we have considered the following equations for the complete RDF of
Lennard-Jones fluids proposed by Matteoli and Mansoori [2], and used

Fig. 8. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [12]) at
T=75°C.
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Fig. 9. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [ 12]) at
T= 100°C.

them to provide extrapolated complete curves of RDF in near-critical and
supercritical conditions.

Fig. 10. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [12]) at
T=150°C.
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Fig. 11. Comparison of the proposed model for the first shell
of RDF and the experimental data (Narten and Levy [ 12]) at
T=200°C.

where x = r/d, d is the contact distance, and P i's are adjustable constants.
These equations were able to reproduce the simulated RDF curves of
Lennard-Jones fluids as well as their reduced internal energy and pressure
in different conditions. Here we have carried out a parametrization of these
equations with respect to the experimental RDF curves of Narten and Levy
[12], and of the simulated curve of Chialvo and Cummings [13] at 300°C.
In doing that, the following features with respect to temperature were
obtained from the above data and taken into account:

(a) the trend of the height of the first peak;

(b) the behavior of the contact distance; and

(c) the value of the distance between consecutive subsequent peaks.

To extend the field of application from saturation pressure, Psat, to
higher pressures, we assume that features (b) and (c) depend only on the
density. Moreover, the constraint was imposed that the calculated RDF
curves would fit the experimental values of the isothermal compressibility,
KT, by means of the well known equation:

Substituting Eqs. (47) and (48) into the above equation, the following
analytical expression would result for the isothermal compressibility.
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This constraint was checked at 25°C intervals from 25 to 350°C at
P = Psat, from 100 to 400°C at P = 0.5 kbar, and from 175 to 475°C at
P = 1 kbar. Accordingly, 42 constraint points have been used altogether.
We utilized the experimental isothermal compressibility values reported by
Helgeson and Kirkham [14]. As a result, we were able to express the seven
parameters Pi as a function of temperature according to the rational equa-
tion

where t = T/100. The matrices of qij so obtained are reported in Table I for
the three pressure values. By introducing these values in Eq. (51), Eqs. (47)
and (48) reproduce the 42 values of the isothermal compressibility with an
average absolute deviation of 1.1%, the maximum being 4%. Given a
couple of T and P in the appropriate ranges, by interpolating each Pi

parameter at the given pressure by means of the values P i (T ,P s a t ) ,
P i (T ,0 .5 kbar), and P i ( T , 1 kbar), a representation of the shape of the
water RDF curve can be obtained. In other words, from these equations
we can obtain a realistic picture of the RDF of water in its stable states at
temperatures and pressures corresponding to those inside the polygon in
Fig. 12 delimited by the dashed and solid lines.

Figures 13-15 represent comparisons between the curves produced by
the first shell of RDF model, Eqs. (2) and (3), and by the extended model,
Eqs. (47) and (48), at 25, 100, and 200°C; experimental data are also
reported on the graphs.
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Fig. 12. Validity ranges of Eq. (50).

In order to verify the validity of the proposed model for near-critical
and supercritical conditions, we have calculated the first shell of RDF for
the conditions T=300°C, p = 0.72 g . c m - 3 and T = 400°C, p = 0.66
g.cm -3 for which the experimental data [15] and molecular simulation
data [13] are available. Figures 16 and 17 show the corresponding com-
parative results for the RDF. According to these figures, there is a good
general agreement among the first-shell RDF model, the extended model,
the experimental results and the simulated data based on ST2 model as far
as the location and height of the peak are concerned.

Fig. 13. Comparison of the proposed model for the first
shell of RDF, extended RDF equation and the experimental
data (Narten and Levy [12]) at 7=25°C.

Radial Distribution Function of Water
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Fig. 14. Comparison of the proposed model for the first
shell of RDF, extended RDF equation and the experimental
data (Narten and Levy [12]) at T= 100°C.

In Figs. 18 and 19 we compare the results of the first-shell model with
those obtained from Eqs. (47), (48), and (51) in conditions where no
experimental or simulated data are available, T= 370°C, p = 0.58 g • cm - 3 ,
and T=500°C, p = 0.53 g . c m - 3 , respectively. The agreement is satisfac-
tory.

One of the important features of the experimental RDF data of water
was reported to be the fact that as the temperature is raised from ambient

Fig. 15. Comparison of the proposed model for the first
shell of RDF, extended RDF equation and the experimental
data (Narten and Levy [12]) at T=200°C.
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Fig. 16. Comparison of the proposed model for the first
shell of RDF, the experimental data (Soper et al. [15]), the
molecular simulation (Chialvo and Cummings [13]) and
the extended RDF equation at T=300°C.

temperature to about 170°C, the first peak diminishes a little in height,
while by further increasing the temperature to the supercritical region,
there is a rise in the first peak again [16]. This peculiarity of water
molecules which appears in all experimental [12, 15] and simulated data
[13] and is present in the treatment represented by Eqs. (47), (48), and
(51), is also predicted by the proposed model.

Fig. 17. Comparison of the proposed model for the first
shell of RDF, the experimental data (Soper et al. [ 15]), the
molecular simulation data (Chialvo and Cummings [13])
and the extended RDF equation at T = 400°C.
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Fig. 18. Comparison of the proposed model for the first
shell of RDF and the extended RDF equation at T= 370°C,
p = 0.58.

Figures 20 to 22 represent the variations of the first peak of RDF of
water at reduced temperatures (Tr = T/Tc = T*/T*c) of 0.5, 1.0, and 1.5 and
reduced densities (pr = p/pc = p*/p* c ) of 0.5, 1.0, and 2.0, respectively. In
order to compare the results obtained for water with the RDF of Lennard-
Jones fluids, the corresponding RDF curves for Lennard-Jones fluids at the
similar conditions have been plotted on the same figures. We have chosen
the critical temperature and density of Lennard-Jones fluids [17, 18]

Fig. 19. Comparison of the proposed model for the first
shell of RDF and the extended RDF equation at T= 500°C,
p = 0.53.
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Fig. 20. Variations of the first peak of water RDF and
a Lennard-Jones fluid RDF at Tr = 0.5.

Fig. 21. Variations of the first peak of water RDF and a
Lennard-Jones fluid RDF at Tr= 1.
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Fig. 22. Variations of the first peak of water RDF and a
Lennard-Jones fluid RDF at Tr = 1.5.

T*c = 1.31 and p*c = 0.31. According to these figures, the first peaks of
Lennard-Jones fluid RDFs are higher at subcritical conditions and lower
at supercritical conditions than those of water.

5. SUFFICIENCY OF THE FIRST SHELL OF RDF IN
CALCULATING THE ISOTHERMAL COMPRESSIBILITY

The concept of the radius of influence was proposed by Mansoori and
Ely [19] for the theory of local compositions. We apply this concept to
calculate the distance at which the RDF could be truncated. In all cases
studied, it is shown that the radius of truncation is located inside the first
shell of RDF.

By using RDF, it is possible to calculate the isothermal compressibility
of a substance by applying Eq. (49). In order to make this relationship
dimensionless, we define K*T = KTE/cr3.
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To calculate the isothermal compressibility using the RDF, we intro-
duce RK, the radius of truncation of RDF. The integral in Eq. (52) can be
written in the following form:

In general, Eq. (54) has several roots for RK. However, we impose the
constraint that RK has to be within the first shell of RDF. Figure 23
represents schematically the value of RK which gives rise to the equality of
dashed areas above and below the horizontal axis to the right of RK. Since
g(y) is a function of temperature and density, RK is also a function of tem-
perature and density.

Considering Eq. (54), we substitute Eq. (53) into Eq. (52).

Fig. 23. Radius of truncation for the isothermal com-
pressibility.

RK is chosen such that the second integral in Eq. (53) disappears, i.e.,

Figure 24 illustrates the variations of RK with the temperature at Psat,
0.5 and 1 kbar. In order to obtain RK, we have utilized the isothermal com-
pressibility values from the experimental data reported by Helgeson and
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Kirkham [14]. According to Fig. 24, for all the conditions reported the
radius of truncation of RDF is within the first shell.

6. CONCLUSIONS

We have extended a model for the first shell of RDF, previously
developed and applied to simple fluids, to water in such a way to cover
temperature and pressure ranges from ambient to supercritical conditions.
This model takes into account an effective Kihara potential function by its
parametrization with respect to the chain association theory and the con-
formal solution theory. The calculated curves of RDF compare well with
subcritical experimental data and with near-critical and supercritical curves
obtained either by simulation or with a semi-empirical model here devised
and described. Comparison with the first peaks of RDF of Lennard-Jones
fluids reveals the fact that the height of the first peak of the water RDF
changes much less at subcritical and supercritical conditions than those of
Lennard-Jones fluids.
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